New Cubature Formulae and Hyperinterpolation in Three Variables
نویسندگان
چکیده
A new algebraic cubature formula of degree 2n+1 for the product Chebyshev measure in the d-cube with ≈ n/2 nodes is established. The new formula is then applied to polynomial hyperinterpolation of degree n in three variables, in which coefficients of the product Chebyshev orthonormal basis are computed by a fast algorithm based on the 3-dimensional FFT. Moreover, integration of the hyperinterpolant provides a new Clenshaw-Curtis type cubature formula in the 3-cube.
منابع مشابه
New cubature formulae and hyperinterpolation
A new algebraic cubature formula of degree 2n + 1 for the product Chebyshev measure in the d-cube with ≈ nd/2d−1 nodes is established. The new formula is then applied to polynomial hyperinterpolation of degree n in three variables, in which coefficients of the product Chebyshev orthonormal basis are computed by a fast algorithm based on the 3dimensional FFT. Moreover, integration of the hyperin...
متن کاملTrapezoidal Cubature Formulae and Poisson’s Equation
The idea of extending univariate quadrature formulae to cubature formulae that hold for spaces of polyharmonic functions is employed to obtain in a new way bivariate trapezoidal cubature rules. The notion of univariate monospline is extended to functions of two variables in terms of a solution of Poisson’s equation. This approach allows us to characterize the error of the trapezoidal cubature f...
متن کاملHyper2d: A numerical code for hyperinterpolation on rectangles
Hyperinterpolation at Morrow-Patterson-Xu cubature points for the product Chebyshev measure provides a simple and powerful polynomial approximation method on rectangles. Here, we present an accurate and efficient Matlab/Octave implementation of the hyperinterpolation formula, accompanied by several numerical tests.
متن کاملHyperinterpolation in the cube
We construct an hyperinterpolation formula of degree n in the three-dimensional cube, by using the numerical cubature formula for the product Chebyshev measure given by the product of a (near) minimal formula in the square with Gauss-Chebyshev-Lobatto quadrature. The underlying function is sampled at N ∼ n/2 points, whereas the hyperinterpolation polynomial is determined by its (n + 1)(n + 2)(n...
متن کاملNumerical hyperinterpolation over nonstandard planar regions
We discuss an algorithm (implemented in Matlab) that computes numerically total-degree bivariate orthogonal polynomials (OPs) given an algebraic cubature formula with positive weights, and constructs the orthogonal projection (hyperinterpolation) of a function sampled at the cubature nodes. The method is applicable to nonstandard regions where OPs are not known analytically, for example convex ...
متن کامل